40,765 research outputs found

    Phase Transitions in the NMSSM

    Full text link
    We study phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with the weak scale vacuum expectation values of the singlet scalar, constrained by Higgs spectrum and vacuum stability. We find four different types of phase transitions, three of which have two-stage nature. In particular, one of the two-stage transitions admits strongly first order electroweak phase transition, even with heavy squarks. We introduce a tree-level explicit CP violation in the Higgs sector, which does not affect the neutron electric dipole moment. In contrast to the MSSM with the CP violation in the squark sector, a strongly first order phase transition is not so weakened by this CP violation.Comment: 21 pages, 8 figure

    CP Violation in the Higgs Sector and Phase Transition in the MSSM

    Get PDF
    We investigate the electroweak phase transition in the presence of a large CP violation in the squark sector of the MSSM. When the CP violation is large, scalar-pseudoscalar mixing of the Higgs bosons occurs and a large CP violation in the Higgs sector is induced. It, however, weakens first-order phase transition before the mixing reaches the maximal. Even when the CP violation in the squark sector is not so large that the phase transition is strongly first order, the phase difference between the broken and symmetric phase regions grows to O(1), which leads to successful baryogenesis, when the charged Higgs bosons is light.Comment: 18 pages, 6 figures, LaTeX2

    HOLOGRAPHIC HIGH-ORDER ASSOCIATIVE MEMORY SYSTEM

    Get PDF

    Acoustic model adaptation for ortolan bunting (Emberiza hortulana L.) song-type classification

    Get PDF
    Automatic systems for vocalization classification often require fairly large amounts of data on which to train models. However, animal vocalization data collection and transcription is a difficult and time-consuming task, so that it is expensive to create large data sets. One natural solution to this problem is the use of acoustic adaptation methods. Such methods, common in human speech recognition systems, create initial models trained on speaker independent data, then use small amounts of adaptation data to build individual-specific models. Since, as in human speech, individual vocal variability is a significant source of variation in bioacoustic data, acoustic model adaptation is naturally suited to classification in this domain as well. To demonstrate and evaluate the effectiveness of this approach, this paper presents the application of maximum likelihood linear regression adaptation to ortolan bunting (Emberiza hortulana L.) song-type classification. Classification accuracies for the adapted system are computed as a function of the amount of adaptation data and compared to caller-independent and caller-dependent systems. The experimental results indicate that given the same amount of data, supervised adaptation significantly outperforms both caller-independent and caller-dependent systems
    corecore